Diversity Combining via Universal Dimension-Reducing Space-Time Transformations

Elad Domanovitz and Uri Erez

June 18th, 2018
2018 International Symposium on Information Theory

Scenario of interest

What can be guaranteed universally without any CSI at the
dimension reduction transformation?

Scenario of interest

- Denote $\mathbf{y}=\mathbf{h} x+\mathbf{n}$
- Signal $x \sim \mathcal{C N}(0,1)$

Noise is $\mathbf{n} \sim \mathcal{C N}(0, \mathbf{I})$

$$
C S I=f(\mathbf{h}) \Longrightarrow \mathcal{H}=\{\mathbf{h} \text { s.t. } f(\mathbf{h})=C S I\}
$$

- Assume
$\|\mathbf{h}\|^{2}=$ const, for simplicity const $=1$
Receiver projects the received signal: $\hat{x}=<\mathbf{y}, \mathbf{g}>$ SNR $=|\langle\mathbf{h}, \mathbf{g}\rangle|^{2}$
- Goal: maximize worst-case SNR \Longrightarrow

$$
\mathrm{SNR}^{*}=\min _{\mathbf{h}} \max _{\mathbf{g}(C S I)} \min _{\mathcal{H}}|<\mathbf{h}, \mathbf{g}>|^{2}
$$

Scenario of interest

CSI	Projection	$\min _{\mathbf{h}} \max _{\mathbf{g}(C S I)} \min _{\mathcal{H}}\|<\mathbf{h}, \mathbf{g}>\|^{2}$			
Full (h)	$\begin{aligned} & \mathbf{g}=\mathbf{h} \\ & (\mathrm{MRC}) \end{aligned}$	$\begin{gathered} \operatorname{SNR}(\mathbf{h})=\\|\mathbf{h}\\|^{2} \\ \operatorname{SNR}^{*}=1 \end{gathered}$			
$\left(\begin{array}{c} 1-\mathrm{bit} \\ \left(\left\|h_{1}\right\| \stackrel{?}{\lessgtr}\left\|h_{2}\right\|\right) \end{array}\right.$	$\begin{aligned} \mathbf{g}= & \begin{cases}{\left[\begin{array}{ll} {[1} \end{array}\right]^{T}\left\|h_{1}\right\| \geq\left\|h_{2}\right\|} \\ {\left[\begin{array}{lll} 0 & 1 \end{array}\right]^{\top}} & \mathrm{O} / \mathrm{W}\end{cases} \\ & \text { (Selection) } \end{aligned}$	$\begin{gathered} \operatorname{SNR}(\mathbf{h})=\max \left(\left\|\mathbf{h}_{\mathbf{1}}\right\|^{2},\left\|\mathbf{h}_{\mathbf{2}}\right\|^{2}\right) \\ \mathrm{SNR}^{*}=\frac{1}{2} \end{gathered}$			
None	$?$	$\begin{gathered} \operatorname{SNR}(\mathbf{h})=\|<\mathbf{h}, \mathbf{g}>\|^{2} \\ \mathrm{SNR}^{*}=0 \end{gathered}$			

Is there something to learn from the dual problem?

| Rx combining \quad Tx combining

Performance of dual

CSI	Projection	$\min _{\mathbf{h}} \max _{\mathbf{g}(C S I)} \min _{\mathcal{H}}\|<\mathbf{h}, \mathbf{g}>\|^{2}$			
Full (h)	$\begin{gathered} \mathbf{g}=\mathbf{h} \\ \text { (Beamforming) } \end{gathered}$	$\begin{gathered} \operatorname{SNR}(\mathbf{h})=\\|\mathbf{h}\\|^{2} \\ \operatorname{SNR}^{*}=1 \end{gathered}$			
$\binom{\text { 1-bit }}{\left(\left\|h_{1}\right\| \stackrel{?}{\lessgtr}\left\|h_{2}\right\|\right.}$	$\begin{aligned} \mathbf{g}= & \begin{cases}{\left[\begin{array}{ll} 1 & 0 \end{array}\right]^{T}\left\|h_{1}\right\| \geq\left\|h_{2}\right\|} \\ {\left[\begin{array}{ll} 0 \end{array}\right]^{T}} & \mathrm{O} / \mathrm{W}\end{cases} \\ & \text { (Selection) } \end{aligned}$	$\begin{gathered} \operatorname{SNR}(\mathbf{h})=\max \left(\left\|\mathbf{h}_{\mathbf{1}}\right\|^{2},\left\|\mathbf{h}_{\mathbf{2}}\right\|^{2}\right) \\ \mathrm{SNR}^{*}=\frac{1}{2} \end{gathered}$			
None	$?$	$\begin{gathered} \operatorname{SNR}(\mathbf{h})=\|<\mathbf{g}, \mathbf{h}>\|^{2} \\ \mathrm{SNR}^{*}=0 \end{gathered}$			

Space-time codes to the rescue

- No matter what direction we choose, $\operatorname{SNR}^{*}(\mathbf{h})=0$
- So we change the rules of the game
- Assuming channel is fixed over multiple symbols \Longrightarrow Unitary space-time codes

Still linear but over two or more time instances

- Recall Alamouti modulation

Alamouti modulation

- $\left[\begin{array}{c}y(1) \\ y(2)^{*}\end{array}\right]=\frac{1}{\sqrt{2}} \underbrace{\left[\begin{array}{cc}h_{1} & h_{2} \\ -h_{2}^{*} & h_{1}^{*}\end{array}\right]}_{\|\mathbf{h}\| \mathbf{H}_{\text {eff }}\left(h_{1}, h_{2}\right)}\left[\begin{array}{l}x(1) \\ x(2)\end{array}\right]+\left[\begin{array}{l}n(1) \\ n(2)\end{array}\right]$
- $\mathbf{H}_{\text {eff }}\left(h_{1}, h_{2}\right)$ is an orthonormal matrix for any h_{1}, h_{2} : $\mathbf{H}_{\text {eff }}\left(h_{1}, h_{2}\right) \mathbf{H}_{\text {eff }}\left(h_{1}, h_{2}\right)^{H}=\mathbf{I}$
- Using an estimation of $\mathbf{H}_{\mathrm{eff}}\left(h_{1}, h_{2}\right) \Longrightarrow \hat{x}=\mathbf{H}_{\mathrm{eff}}^{H} \mathbf{y}=\frac{\|\mathbf{h}\|}{\sqrt{2}} x+\mathbf{n}^{\prime}$

$$
\operatorname{SNR}(\mathbf{h})=\frac{\|\mathfrak{h}\|^{2}}{2}, \operatorname{SNR}^{*}=\frac{1}{2}
$$

Going back to Rx scenario

- We're missing a counterpart for Alamouti modulation
- Once the question is defined, the answer is quite evident...

So what is \mathbf{G} in case of Alamouti?

- Alamouti modulation (complex): $\mathbf{X}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}-x(2)^{*} & x(1) \\ x(1)^{*} & x(2)\end{array}\right]$
- Can be written over the reals as:

$$
\frac{1}{\sqrt{2}} \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]}_{\mathbf{G}^{T}} \underbrace{\left[\begin{array}{c}
x_{R}(1) \\
x_{l}(1) \\
x_{R}(2) \\
x_{l}(2)
\end{array}\right]}_{\mathbf{x}}
$$

- Note - this operation amounts to dimension expansion $(4 \longrightarrow 8)$
- We want the other way around - dimension reduction $(8 \longrightarrow 4) \ldots$

Linear universal combining at the receiver

- Signal received at antenna $i=1,2$, at time $t: s_{i}(t)=h_{i} x(t)+n_{i}(t)$
- Stack two receive symbols $\left[\begin{array}{ll}s_{1}(1) & s_{1}(2) \\ s_{2}(1) & s_{2}(2)\end{array}\right]$
- Apply $\mathbf{y}=\underbrace{\frac{1}{\sqrt{2}}\left[\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0\end{array}\right]}_{\mathbf{G}}\left[\begin{array}{c}s_{1 R}(1) \\ s_{1 /}(1) \\ s_{2 R}(1) \\ s_{2 I}(1) \\ s_{1 R}(2) \\ s_{1 /}(2) \\ s_{2 R}(2) \\ s_{2 I}(2)\end{array}\right]$
- Note that \mathbf{G}^{T} is Alamouti modulation over the reals (dimension expansion \rightarrow dimension reduction)

Linear universal combining at the receiver

- The following holds : $\mathbf{y}=\frac{\|\mathbf{h}\|}{\sqrt{2}} \mathbf{U}\left(h_{1}, h_{2}\right) \mathbf{x}+\mathbf{G n}$

$$
=\frac{\|\mathbf{h}\|}{\sqrt{2}} \mathbf{U}\left(h_{1}, h_{2}\right) \mathbf{x}+\mathbf{n}^{\prime}
$$

where $\mathbf{U}\left(h_{1}, h_{2}\right)=\frac{1}{\|\mathbf{h}\|}\left[\begin{array}{cccc}h_{1 R} & -h_{1 \prime} & h_{2 R} & -h_{2 I} \\ h_{1 \prime} & h_{1 R} & -h_{2 I} & -h_{2 R} \\ h_{2 R} & -h_{2 \prime} & -h_{1 R} & h_{1 I} \\ h_{2 \prime} & h_{2 R} & h_{1 I} & h_{R 1}\end{array}\right]$

- $\mathbf{U}\left(h_{1}, h_{2}\right)$ is an orthonormal matrix for any h_{1}, h_{2} : $\mathbf{U}^{T}\left(h_{1}, h_{2}\right) \mathbf{U}\left(h_{1}, h_{2}\right)=\mathbf{I}$
- Using an estimation of $\mathbf{U} \Longrightarrow \quad \hat{\mathbf{x}}=\mathbf{U}^{T}\left(h_{1}, h_{2}\right) \cdot \mathbf{y}$

$$
=\frac{\|\mathbf{h}\|}{\sqrt{2}} \mathbf{x}+\mathbf{n}^{\prime \prime}
$$

- Remark: Channel needs to be estimated only at the end terminal

Rx combining

CSI	Projection	$\min _{\mathbf{h}}\left(\max _{\mathbf{g}=\mathrm{f}(\mathrm{CSI})}<\mathbf{y}, \mathbf{g}>\right)$

But can we think of any application?

- We don't like loose ends...
- Why not make use of full CSI? After all, we're talking receiver side...
- Justification for 1-bit CSI (selection)

Reduce number of analog to digital converters (ADC)
Reduce number of bits in fronthaul

- Why is selection (1-bit CSI) not good enough?

What is the benefit of universality?
Minor: in traditional scenarios, selection has some drawbacks (complexity, delay, errors)
Major: in case of multi-user detection, selection fails

Potential applications - multi user

- Reduce the number of ADCs
- "Dumb" (low latency / enhanced diversity) relaying
- Ultra-reliable, low-latency communication (ad-hoc netwroking)

- Time-domain sub-Nyquist sampling

Application 1: ADC

(a) MRC - $h_{\text {eff }}=\|\mathbf{h}\|$

(c) Selection $-h_{\text {eff }}=\max \left(\left|h_{1}\right|,\left|h_{2}\right|\right)$

(b) Arbitrary selection $-h_{\text {eff }}=h_{1}$

(d) Universal combining - $h_{\text {eff }}=\frac{\|\mathbf{h}\|}{\sqrt{2}}$

Application 1: reduce number of ADC, single user

Comparison of the mutual information $I_{\text {scheme }}(P)=\log \left(1+h_{\text {eff,scheme }}^{2} P\right)$ attained by each of the schemes

Figure: 2×1 i.i.d. Rayleigh fading channel, with a target rate of $R_{\mathrm{tar}}=2$ bits per complex symbol.

Application 1: reduce number of ADC, multi user

Comparison of the symmetric-capacity attained by each of the schemes

Figure: 8 transmitters, a common receiver equipped with two antennas. All users transmit at an equal rate $R_{\text {tar }}$ such that $8 R_{\mathrm{tar}}=2$ bits per complex symbol.
Theorem 1
For a Rayleigh fading $2 \times N$ MIMO-MAC, for any fixed (symmetric) target rate, at asymptotic high SNR, the universal combining scheme suffers a power penalty factor no greater than 2 with respect to an optimal receiver.

Outlook

- What about more than 2 Rx antennas?

Extensions to Alamouti: OSTBC
Straightforward implementation fails (rate-1 complex orthogonal designs do not exist beyond the case of two antennas)
The problem: Effective channel is non-square \Longrightarrow not invertible Extension 1: dither
Extension 2: quasi orthogonal codes Other?

- Every Tx technique involving OSTBC can be considered ...
- What about more than a single antenna per user?

Is there a dual to Golden/Perfect codes??

Thank you for your attention

Application 2: "dumb" relaying

- "Dumb" relay = can only apply channel-independent linear processing followed by scalar quantization
- The output is fed into a rate-constrained bit pipe

- The signal received at relay $i=1,2$ and antenna $j=1,2$ is given by $s_{j}^{i}(t)=h_{j 1}^{i} \cdot x_{1}(t)+h_{j 2}^{i} \cdot x_{2}(t)+n_{j}^{i}(t)$.
- The corresponding channel matrix of relay $i: \mathbf{H}^{i}=\left[\begin{array}{ll}h_{11}^{i} & h_{12}^{i} \\ h_{21}^{i} & h_{22}^{i}\end{array}\right]$.

Application 2: "dumb" relaying

- The signal passed to the cloud from relay i :

$$
\mathbf{y}^{i}=\mathbf{U}\left(h_{11}^{i}, h_{21}^{i}\right) \mathbf{x}_{1}+\mathbf{U}\left(h_{12}^{i}, h_{22}^{i}\right) \mathbf{x}_{2}+\mathbf{n}^{\prime i},
$$

- Effective channel:

$$
\left[\begin{array}{l}
\mathbf{y}^{1} \\
\mathbf{y}^{2}
\end{array}\right]=\underbrace{\left[\begin{array}{l|l}
\mathbf{U}\left(h_{11}^{1}, h_{21}^{1}\right) & \mathbf{U}\left(h_{12}^{1}, h_{22}^{1}\right) \\
\hline \mathbf{U}\left(h_{11}^{2}, h_{21}^{2}\right) & \mathbf{U}\left(h_{12}^{2}, h_{22}^{2}\right)
\end{array}\right]}_{\mathcal{G}}\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{n}^{\prime 1} \\
\mathbf{n}^{\prime 2}
\end{array}\right]
$$

