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Scenario of interest

x x̂ =< y, g >g
g

y1

y2

h1

h1

h2

h2

Denote y = hx + n
◮ Signal x ∼ CN (0, 1)
◮ Noise is n ∼ CN (0, I)
◮ CSI = f (h) =⇒ H = {h s.t. f (h) = CSI}

Assume
◮ ‖h‖2 = const, for simplicity const = 1
◮ Receiver projects the received signal: x̂ =< y, g >
◮ SNR = | < h, g > |2

Goal: maximize worst-case SNR =⇒
SNR∗ = min

h
max
g(CSI )

min
H

| < h, g > |2
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Scenario of interest

CSI Projection min
h

max
g(CSI )

min
H

| < h, g > |2
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Is there something to learn from the dual problem?

Rx combining Tx combining
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Performance of dual

CSI Projection min
h
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Space-time codes to the rescue

No matter what direction we choose, SNR∗(h) = 0

So we change the rules of the game

Assuming channel is fixed over multiple symbols =⇒ Unitary
space-time codes

◮ Still linear but over two or more time instances

Recall Alamouti modulation
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Alamouti modulation

h1

h2

x(2), x(1)

1√
2

[
−x(2)∗ x(1)
x(1)∗ x(2)

]

︸ ︷︷ ︸

X

x̂

[
y(1)
y(2)∗

]

=
1√
2

[
h1 h2
−h∗2 h∗1

]

︸ ︷︷ ︸

‖h‖Heff(h1,h2)

[
x(1)
x(2)

]

+

[
n(1)
n(2)

]

Heff(h1, h2) is an orthonormal matrix for any h1, h2:
Heff(h1, h2)Heff(h1, h2)

H = I

Using an estimation of Heff(h1, h2) =⇒ x̂ = HH
effy =

‖h‖√
2
x + n

′

SNR(h) =‖h‖2
2
, SNR∗ = 1

2
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Going back to Rx scenario

Rx Tx 

Beamforming:MRC:

Antenna selection: Antenna selection:

Alamouti:

?

Full CSI

1-bit CSI

No CSI

SNR(h)=‖h‖2
SNR∗ = 1

SNR(h)=‖h‖2
SNR∗ = 1

SNR(h)=max(|h1|2, |h2|2)
SNR∗ = 1

2

SNR(h)=max(|h1|2, |h2|2)
SNR∗ = 1

2

SNR(h) = ‖h‖2
2

SNR∗ = 1
2

We’re missing a counterpart for Alamouti modulation

Once the question is defined, the answer is quite evident...
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So what is G in case of Alamouti?

Alamouti modulation (complex): X = 1√
2

[
−x(2)∗ x(1)
x(1)∗ x(2)

]

Can be written over the reals as:

1√
2















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0















︸ ︷︷ ︸

GT







xR(1)
xI (1)
xR(2)
xI (2)







︸ ︷︷ ︸

x

Note - this operation amounts to dimension expansion (4 −→ 8)

We want the other way around - dimension reduction (8 −→ 4)...
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Linear universal combining at the receiver

Signal received at antenna i = 1, 2, at time t : si (t) = hix(t) + ni (t)

Stack two receive symbols

[
s1(1) s1(2)
s2(1) s2(2)

]

Apply y =
1√
2







1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 −1
0 0 1 0 −1 0 0 0
0 0 0 1 0 1 0 0







︸ ︷︷ ︸

G















s1R(1)
s1I (1)
s2R(1)
s2I (1)
s1R(2)
s1I (2)
s2R(2)
s2I (2)















Note that GT is Alamouti modulation over the reals
(dimension expansion→ dimension reduction)
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Linear universal combining at the receiver

The following holds : y =
‖h‖√
2
U(h1, h2)x+ Gn

=
‖h‖√
2
U(h1, h2)x+ n′

where U(h1, h2) =
1

‖h‖







h1R −h1I h2R −h2I
h1I h1R −h2I −h2R
h2R −h2I −h1R h1I
h2I h2R h1I hR1







U(h1, h2) is an orthonormal matrix for any h1, h2:
UT (h1, h2)U(h1, h2) = I

Using an estimation of U =⇒ x̂ = UT (h1, h2) · y

=
‖h‖√
2
x+ n′′

Remark: Channel needs to be estimated only at the end terminal
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Rx combining

CSI Projection min
h

(

max
g=f(CSI)

< y, g >

)

Full
(h)

g = h

(MRC)

SNR(h) = ‖h‖2

SNR∗ = 1

h1

h2

1-bit(

|h1|
?
≶ |h2|

) g =

{

[1 0]T |h1| ≥ |h2|
[0 1]T O/W

(Selection)

SNR(h) = max(|h1|2, |h2|2)

SNR∗ = 1
2

h1

h2

None
G

(Universal
combining)

SNR(h) = ‖h‖2
2

SNR∗ = 1
2
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But can we think of any application?

We don’t like loose ends...

Why not make use of full CSI? After all, we’re talking receiver side...

Justification for 1-bit CSI (selection)
◮ Reduce number of analog to digital converters (ADC)
◮ Reduce number of bits in fronthaul

Why is selection (1-bit CSI) not good enough?
What is the benefit of universality?

◮ Minor: in traditional scenarios, selection has some drawbacks
(complexity, delay, errors)

◮ Major: in case of multi-user detection, selection fails

Analog

Cloud

Receiver

Digital

?

Local

?

Digital
h1

h2

x
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Potential applications - multi user

Reduce the number of
ADCs

“Dumb” (low latency /
enhanced diversity)
relaying
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Application 1: ADC
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h1
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(c) Selection - heff = max(|h1|, |h2|)

Analog
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I
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I
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ADC

h1

h1

h2

h2

x

h1x(2)

h1x(1)

h2x(2)
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G U

[
y1

y2

]

[
y3

y4

]

x̂

D

D

(d) Universal combining - heff = ‖h‖√
2
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Application 1: reduce number of ADC, single user

Comparison of the mutual information Ischeme(P) = log
(

1 + h2
eff,scheme

P
)

attained by each of the schemes
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Optimal detection (2 ADCs)
Arbitrary selection (1 ADC)
Optimal selection (1 ADC)
Universal diverstity combining (1 ADC)

Gap of 3 dB 
from MRC

Figure: 2× 1 i.i.d. Rayleigh fading channel, with a target rate of Rtar = 2 bits per
complex symbol.
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Application 1: reduce number of ADC, multi user

Comparison of the symmetric-capacity attained by each of the schemes
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Optimal detection (2 ADCs)
Arbitrary selection (1 ADC)
Optimal selection (1 ADC)
Universal diverstity combining (1 ADC)

Gap of up to 
3 dB from MRC

In fact, gap 
grows unbounded

Figure: 8 transmitters, a common receiver equipped with two antennas. All users
transmit at an equal rate Rtar such that 8Rtar = 2 bits per complex symbol.

Theorem 1

For a Rayleigh fading 2× N MIMO-MAC, for any fixed (symmetric) target
rate, at asymptotic high SNR, the universal combining scheme suffers a
power penalty factor no greater than 2 with respect to an optimal receiver.
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Outlook

What about more than 2 Rx antennas?
◮ Extensions to Alamouti: OSTBC
◮ Straightforward implementation fails (rate-1 complex orthogonal

designs do not exist beyond the case of two antennas)
◮ The problem: Effective channel is non-square =⇒ not invertible

⋆ Extension 1: dither
⋆ Extension 2: quasi orthogonal codes
⋆ Other?

Every Tx technique involving OSTBC can be considered ...

What about more than a single antenna per user?
◮ Is there a dual to Golden/Perfect codes??
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Thank you for your attention
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Application 2: “dumb” relaying

“Dumb” relay = can only apply channel-independent linear processing
followed by scalar quantization

The output is fed into a rate-constrained bit pipe

User 1

User 2

Relay 1

Relay 2

space-time

diversity

combining + 

quantization

ADC

ADC

ADC

ADC

Receiver

b bits

b bits
space-time

diversity

combining + 

quantization

H1

H2

The signal received at relay i = 1, 2 and antenna j = 1, 2 is given by
s ij (t) = hij1 · x1(t) + hij2 · x2(t) + nij(t).

The corresponding channel matrix of relay i : Hi =

[
hi11 hi12
hi21 hi22

]

.

Domanovitz, Erez 21



Application 2: “dumb” relaying

The signal passed to the cloud from relay i :
yi = U(hi11, h

i
21)x1 +U(hi12, h

i
22)x2 + n′i ,

Effective channel:[
y1

y2

]

=

[
U(h111, h

1
21) U(h112, h

1
22)

U(h211, h
2
21) U(h212, h

2
22)

]

︸ ︷︷ ︸

G

[
x1
x2

]

+

[
n′1

n′2

]

.
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ST diversity combining (8 bits/dim)
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